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Abstract 

One of the most common behaviors of cats that have an indoor/outdoor lifestyle is to bring hunted “gifts” to their 
owners, represented by small mammals, reptiles and birds. Access to the outdoors by dogs and cats may represent 
a problematic issue, since they may be at risk of diseases, traffic accidents and ingestion of toxins. Yet, the impact of 
this population of roaming dogs and cats predating wildlife is another concerning issue that receives less attention. 
Despite these risks, most owners still prefer to give outdoor access to their pets to allow them to express their “natural 
instincts,” such as hunting. Therefore, with a growing population of > 470 million dogs and 373 million cats worldwide, 
predation not only represents a threat to wildlife, but also a door of transmission for parasitic diseases, some of them 
of zoonotic concern. In this review, the role played by dogs, and especially cats, in the perpetuation of the biological 
life cycle of zoonotic parasites through the predation of rodents, reptiles and birds is discussed. Feral and domestics 
dogs and cats have contributed to the population collapse or extinction of > 63 species of reptiles, mammals and 
birds. Although the ecological impact of predation on wild populations is well documented, the zoonotic risk of trans-
mission of parasitic diseases has not received significant attention. The parasitic diseases associated to predation vary 
from protozoan agents, such as toxoplasmosis, to cestodes like sparganosis and even nematodes such as toxocariasis. 
Raising awareness about predation as a risk of zoonotic parasitic infections in dogs and cats will aid to create responsi-
ble ownership and proper actions for controlling feral and free-roaming cat and dog populations worldwide.
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Background
To a cat owner, waking up in the morning or arriving 
home after an exhausting day at work just to find that 
“Milo” is playing in bed or near the kitchen with a half-
dead lizard is an unpleasant event that may not be so 
uncommon as many would like it to be. Indeed, cats are 
known to not just hunt small reptiles, rodents and birds, 
but also to bring to their owners some of the day’s hunt 
as a “gift” [1, 2]. In fact, dogs, but especially cats, repre-
sent top predators that can adapt to virtually any type of 

environment, mostly near urban settlements, as well as 
feral populations of dogs and cats that continue to be on 
the rise in all continents [3, 4]. Domestic dogs and cats 
have been part of our society for > 10,000 years [5–7]. An 
emotional attachment to these species is evident in most 
of the western world and has created a more permissive 
culture toward behaviors that may have consequences in 
conservation and animal welfare, such as allowing ani-
mals to have unrestricted access to the outdoors [8, 9]. 
These behaviors are more evident in cats who are allowed 
to wander  and have a partial to total outdoor life [10]. 
This lifestyle is debatable, and even today there is no con-
sensus on whether cats should be allowed to go outside 
or not [11–13]. However, the devastating consequences 
of feral populations and outdoor dogs and cats produce 
in the decline of the native fauna is not debatable [14, 15]. 
Indeed, recent studies have shown the direct and high 

*Correspondence:
Domenico Otranto
domenico.otranto@uniba.it
1 Department of Veterinary Medicine, University of Bari, Valenzano, Italy
2 Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-023-05670-y&domain=pdf


Page 2 of 14Mendoza Roldan and Otranto ﻿Parasites & Vectors           (2023) 16:55 

impact of predation by dogs and cats on populations of 
small mammals, birds, reptiles and amphibians [16–18]. 
Thus, it has been consistently advocated to avoid outdoor 
lifestyles and to reduce the feral dog and cat populations 
to decrease their impact on the native fauna as well as 
to avoid the further extinction of wild species [19–21]. 
Conversely, other problematics raised by predation have 
been scarcely discussed [22]. Indeed, predation is one of 
the most efficient strategies of parasite transmission, as 
it is a direct way for a parasite to complete its life cycle, 
depending on the trophic chain [23, 24]. Trophic-trans-
mitted parasites have, in many cases, evolved strategies 
to enhance predation via prey manipulation [25]. For 
example, Toxoplasma gondii (Eucoccidiorida: Sarcocysti-
dae) depends on the ability of feline predators to feed on 
small rodents and other prey species to complete its life 
cycle [26, 27]. Hence, one of the diseases that has been 
used as a paradigmatic example to avoid the predatory 
behavior of cats and dogs is toxoplasmosis, which is a 
highly prevalent parasite in cat and human populations 
[28, 29]. Therefore, in this review we discuss the parasitic 
diseases associated with predation, with a focus on those 
that are of zoonotic concern, to further evidence the risk 
of transmission of parasitic diseases associated to out-
door lifestyle of dogs and cats.

Greta and Valma are top predators: origin 
of domestic feline and canine populations
The domestication process of dogs and cats was quite 
different and ultimately resulted in a diverse range of 
breeds, sizes and phenotypes of dogs but a more con-
served and almost ancestral form of modern cats [30–33]. 
On one hand, the domestication of dogs occurred around 
10,000 years ago, based on a need of primitive humans to 
hunt in packs, as wolves do [34, 35]. Thus, modern dogs 
originated from wolves, using empiric knowledge and 
soon after that of genetics to create breeds with different 
purposes (e.g. hunting, searching, company) [35]. On the 
other hand, domestication of modern cats is believed to 
had happen several thousands of years before the domes-
tication of dogs [36, 37]. The relationship between cats 
and humans had a pest control purpose, aiding human 
populations in keeping the rodent and other vermin 
populations under control, eventually favoring the trans-
formation of a hunting-based society to a farming, stable 
human population. Given this unique purpose of cats, 
besides being company to their owners, breeds of cats 
were created solely with an esthetic purpose, with more 
than 50 modern breeds of cats [38]. Despite this rela-
tively large number of cat breeds, the modern cat mor-
phology has not changed as dramatically as that of dogs. 

Furthermore, cats and hunting breeds of dogs still main-
tain their predatory instincts.

Dogs and cats are a pivotal part of modern civilization, 
as more than half of the human global population is esti-
mated to have a pet at home, dogs being the most popu-
lar, present in one of three homes worldwide [39, 40]. In 
addition, almost a quarter of pet owners have a cat [41]. 
For example, in a survey conducted in 2021–2022 in the 
USA, about 70% households (i.e. 90.5 million families) 
owned a pet, specifically 45.3 million cats and 69 million 
dogs, with a total pet industry expenditure of $123.6 bil-
lion [42, 43]. Apart from the growing domestic dog and 
cat population (estimated around 900 million and 600 
million, respectively), a large portion of this number is 
represented by wild and feral animals, which make up 
to more than half of the total number [21, 44]. In addi-
tion, feral populations have a major negative impact on 
conservation and disease transmission [21]. Specifically, 
the dog and cat population can be classified in three 
main groups (Fig.  1): domesticated or companion ani-
mals, which are animals that are in tight contact with 
humans, receive proper husbandry and healthcare, have 
a lower burden of parasites and predate occasionally 
on small animals [45]. Stray animals are those that have 
occasional contact with humans. Thus, some of them 
receive less food and shelter, as well as healthcare, being 
more exposed to parasites and feeding mainly on small 
prey [46, 47]; feral animals are those that have no con-
tact with humans and are independent. Thus, they do not 
receive food or healthcare, have a higher burden of para-
sites and feed mainly on small prey [48]. There is a large 
and ongoing debate on control policies for these “wilder” 
populations of dogs and cats [49, 50]. Regardless of this 
classification, cats have a more independent nature than 
dogs, which makes them more prone to hunt than stray 
or domesticated dogs. Moreover, dogs in general can be 
trained to reduce their hunting behavior, differently from 
cats, which have a very strong hunting instinct, which 
often is even encouraged by owners [51].

Given humanity’s emotional attachment to cats and 
dogs, the general appeal and tight relationship between 
dogs, cats and humans has hindered their population 
control, since reduction or elimination plans may be con-
sidered animal abuse [52–54]. Hence, policy makers and 
legislators have imposed softer control measures such 
as the Trap-Neuter-Return (TNR) program in the USA 
for cats or the outdoor cat colonies in many countries 
in Europe, completely prohibiting euthanasia as a con-
trol measure [55, 56]. Consequently, invasive cat and dog 
populations have had a devastating impact in places such 
as Galapagos Islands, Mauritius, Madagascar and Aus-
tralia, to name a few [57–60].
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Predation and its impact beyond conservation
Dogs and cats, especially those with feral behavior, rep-
resent an important threat to biodiversity. However, 
predation also may be a gateway for the transmission 
of parasites, some of which may have zoonotic poten-
tial, threatening not only our companion animals but 
also human health [61, 62]. Despite this potential of 
zoonotic transmission, most efforts and studies have 
been focused on the impact of predation in conserva-
tion [63–66]. Indeed, many studies have correlated the 
presence of dogs and mainly cats with the decline or 
extinction of native populations. For example, cats were 
the partial cause of the extinction of the Stephens Island 
wren (Traversia lyalli) in New Zealand [67]. Likewise, 
cats have reduced the native fauna in many ecosystems 
and caused the extinction of small animals on islands 
[68–70]. The primary trophic source for dogs and cats 
is small mammals, birds, reptiles and invertebrates [71, 
72]. Although feral populations contribute mainly to the 
predatory pressure on small prey, domestic dogs and cats 
with an outdoor lifestyle also have an important impact 
on endemic populations of wildlife, being also a source of 
zoonotic infection for human beings. For example, stud-
ies in suburban areas of the US demonstrated that > 44% 
of cats that had outdoor lifestyles preyed on small wild 
animals, with 23% of their prey being brought back to 
their owners [73]. Considering this, prey brought back to 
the household may represent another transmission route 
of parasites (Fig.  2), apart from fecal-oral transmission, 
more important than currently acknowledged [74].

The deleterious impact of predation has been particu-
larly evident on islands such as in Australia and New 
Zealand, where no other predators were present; thus, 
the wildlife was more vulnerable to invasive predators, 
such as dogs and cats [75, 76]. Indeed, it is estimated 
that feral cats kill > 466 million reptiles per year in Aus-
tralia, where a single cat may kill up to 225 reptiles per 
year [76]. However, the situation is not less worrisome 
elsewhere. Studies estimated that > 478 million reptiles 
are killed by cats in the US per year [16]. Conversely, 
the impact of dog predation has been less assessed and 
quantified. However, studies performed in Tasmania, 
showed that dogs also are a cause of native wildlife popu-
lation decline and disturbance [77]. Dogs may also have 
a devastating effect on small and vulnerable populations, 
such as the complete annihilation of the largest flamingo 
colony in Sardinia, Italy [78] or the predation of 55.5% 
(500/900) of a kiwi bird population by a single dog in 
New Zealand [79]. Overall, dogs and cats are estimated 
to have caused the extinction of > 63 species of small ani-
mals (i.e. rodents, birds, reptiles and amphibians) (Fig. 3) 
[68]. However, of all the invasive species (e.g. red foxes, 
pigs, dogs, mongoose, wild boars), cats are the primary 
cause of population decline and extinction of endemic 
animals worldwide [80]. Therefore, though feral and col-
ony cats are the main threat to vulnerable endemic spe-
cies, especially on islands [57, 61, 64], their control and 
eradication are under debate because of the perception of 
“beneficial” predation of cats toward pest populations of 
mice and rats [81].

Fig. 1  Categories of dog and cat populations according to contact with humans, healthcare access and exposure to parasites as a consequence of 
predation
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Overall, predation is a typical ancestral behavior of 
dogs and cats, which greatly affects many ecological pro-
cesses, ultimately favoring parasites in the completion 
of their biological life cycle. Indeed, parasites not only 
regulate ecological processes, reducing host survival and 
fitness [82, 83], but also host abundance [84]. Nonethe-
less predation has long been overlooked in many fields of 
parasitology, such as parasite ecology, biology and epide-
miology [85], resulting in lack of knowledge on the role 
prey may exert on the maintenance and control of para-
sitic diseases of dogs and cats. This is also due to the dif-
ficulties in studying intermediate and paratenic hosts in 
parasitology, which are mainly related to the long time 
required for running those studies under field condi-
tions. Nevertheless, in this review we highlight and point 
out some parasites of zoonotic concern that are strictly 
related to predation as a strategy to complete their life 
cycle.

Predation and zoonotic parasites
Many species of parasites (i.e. genera Spirura, Physa-
loptera, Gnathostoma, Diplopylidium or Joyeuxiella) 
use small animals, such as rodents, reptiles and birds, 
as intermediate or paratenic hosts and dogs and cats as 
definitive hosts. While most of these parasites are spe-
cific for their animal hosts, other are of zoonotic concern 
(Table 1) [62, 86, 87]. Recent extrinsic factors (e.g. envi-
ronmental and climate modifications, urbanization, habi-
tat fragmentation) have favored the trophic transmission 

of parasites [88, 89]. This has resulted in an increased 
risk of spill-over of parasites from wild to peri-urban and 
urban settings favoring the contact of predators and prey, 
along with the parasites they carry. For example, in Aus-
tralia two zoonotic parasitic diseases associated with the 
presence of cats are toxoplasmosis and sparganosis, car-
ried by Spirometra spp. (Cestoda: Diphyllobothriidae), 
which may overtly spill over to native fauna and human 
populations [90]. Indeed, toxoplasmosis, besides being 
of great public health concern, has contributed to the 
decline of native mammal and bird populations, such as 
the urban populations of the Eastern Barred Bandicoot 
(Perameles gunnii) [91]. The other disease highly preva-
lent in feral cats in Australia is sparganosis, which causes 
human infection and also affects native fauna [92].

The presence of cats and dogs is also associated with 
gastrointestinal parasites that can be of medical and 
veterinary importance. Furthermore, these animals 
can have an important role as spreaders of these para-
sites through fecal contamination of soil, vegetables 
and water (Fig.  2). Studies assessing the prevalence of 
zoonotic gastrointestinal parasites in the feces of stray 
dogs and cats have constantly pointed out the high 
number of infected animals with a myriad of parasites 
pathogenic to humans [46, 48, 93]. This high preva-
lence is mainly related to the absence of preventative or 
deworming protocols in feral populations of dogs and 
cats as well as the availability of infected prey. In addi-
tion, most owners are not aware of the possibility of 

Fig. 2  Transmission routes of zoonotic parasites of dogs and cats associated with predation
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zoonotic parasites from their dogs and cats [40]. More-
over, free-roaming, feral, colonies or house cats with 
outdoor access, as well as dogs with the same outdoor 
lifestyle, may defecate in public spaces, increasing the 
likeability of human exposure [94]. Companion dogs 
and cats that are allowed to defecate in public places, 
where feces are not collected or disposed of properly, 
also represent an important source of environmental 
contamination [95]. To highlight the impact of dog and 
cat populations with outdoor lifestyle on the trophic 
transmission of zoonotic parasitic diseases, examples of 
the main groups of parasites are given below.

Not only Toxoplasma: zoonotic protozoa that are 
transmitted by predation
For its pathogenicity during gestation in many animal 
species, including humans, toxoplasmosis by T. gon-
dii [96] is probably one of the most important and bet-
ter known zoonotic protozoan infections. A wide range 
of warm-blooded animals are intermediate hosts of this 
protozoan, while felids are definitive hosts. The bio-
logical life cycle in cats is typically perpetuated by their 
predation of rodents, such as mice (Fig.  3a). For exam-
ple, in a cat population in southern Poland 68.8% of 
animals were serologically positive for T. gondii with a 

Fig. 3  Cats predating small animals. A Cat hunting a mouse; B cats hunting a passerine bird; C cat eating a lizard; D cat near a mauled snake
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significantly greater prevalence in older (> 1 year) (83.5%) 
than in younger cats (48.3%) and in cats kept outdoors 
than indoors (69.7% vs. 16.7%) [97]. The occurrence of 
T. gondii infection in marine mammals has raised con-
cerns about the role reptiles (e.g. turtles, crocodiles, 
snakes), amphibians (e.g. frogs, toads) and fish may play 
as a source of infection [98]. Of the 2988 samples of cold-
blooded animals examined in 26 studies reviewed in the 
literature [98], the number of positive cases of T. gondii 
(n = 129) was not sufficient to assess the real involvement 
of these animal species in the biological life cycle of this 
protozoan.

Other less studied protozoan diseases are represented 
by other coccidia (Table  1), for example acute muscu-
lar sarcocystosis caused by Sarcocystis nesbitti (Eucoc-
cidiorida: Sarcocystidae) [99]. This species of Sarcocystis, 
initially detected in southeast Asia (Malaysia), produces 
a muscular presentation after the ingestion of sporocysts 
in food (e.g. uncooked snake meat) or water contami-
nated with feces from infected definitive hosts (i.e. cats, 
snakes, humans). This disease has produced a number of 
recent outbreaks, with > 100 human patients suffering 
from acute muscular illness on Tioman Island, Malasyia 
[100], and 89 human patients with molecularly confirmed 
symptomatic muscular sarcocystosis on Pangkor Island 
[99]. Most of the cases are associated with the consump-
tion of untreated water [101].

Moreover, the presence of feral cats greatly impacts 
human and livestock health costs associated with pro-
tozoan zoonotic diseases (i.e. toxoplasmosis and human 
and livestock sarcocystosis) [102]. In Australia, the 
human costs of these diseases are estimated to be > $6.06 

billion Australian dollars per year, and the costs of toxo-
plasmosis and sarcocystosis affecting sheep and cattle, 
respectively, are > $11.7 million Australian dollars [102]. 
Health costs in humans are associated with cats being the 
definitive hosts of the toxoplasmosis causative agent, thus 
affecting human health via congenital disease, sympto-
matic toxoplasmosis and mental health issues.

Dogs and cats may have a role in spreading protozoan 
species that are associated with environmental con-
tamination, such as Cryptosporidium (Eucoccidiorida: 
Cryptosporidiidae), which causes diarrhea in humans, 
often leading to outbreaks [103]. Cryptosporidium par-
vum global prevalence in dogs (i.e. 1.28%) [104] was 
most related to dogs with outdoor lifestyles (i.e. kennel, 
shelter or stray dogs), which are highly exposed (e.g. 5% 
in kennel dogs and 1.5% in privately owned dogs from 
Italy [105]). However, Cryptosporidium is globally more 
prevalent in cats (i.e. 6%) and has a higher prevalence in 
rural areas and in cats with outdoor lifestyle, associated 
with livestock and wild animals [106]. Dogs and cats may 
become infected with zoonotic genotypes of C. parvum 
through fecal-oral transmission or, in some cases, ingest-
ing infected prey [107]. Besides the host-specific Crypto-
sporidium felis, other species have been detected in cats, 
such as rodent-associated Cryptosporidium muris and 
Cryptosporidium rat genotype II, III and IV [108]. How-
ever, infection with rodent-associated Cryptosporidium 
spp. in cats may be the result of mechanical transmission 
due to predation of infected rodents [109]. Hence, future 
studies to assess the role of predation in the zoonotic 
transmission and circulation of pathogenic protozoa by 
dogs and cats are needed.

Table 1  Zoonotic parasites of dogs and cats associated with trophic transmission

Parasite Definitive host Intermediate hosts Distribution Disease in humans

Protozoa

 Toxoplasma gondii Cats Rodents, birds Cosmopolitan Toxoplasmosis

 Sarcocystis nesbitti Cats, snakes Monkeys, rodents Malaysia Acute muscular sarcocystosis

 Cryptosporidium spp. Dogs, cats Rodents, lizards, amphibians Cosmopolitan Diarrhea

Cestoda

 Mesocestoides lineatus 
Mesocestoides literatus

Dogs, cats Rodents, lizards, amphibians Cosmopolitan Mesocestoidiosis

 Echinococcus multilocularis Dogs, cats Rodents North America, Europe, Japan Alveolar Echinococcosis

 Taenia serialis
Taenia brauni

Dogs, (rare in Cats) Lagomorphs, rodents Cosmopolitan (mainly in Africa) Coenurosis

 Spirometra mansoni
 Spirometra erinaceieuropaei

Dogs, cats Fish, amphibians, snakes Cosmopolitan Sparganosis

Nematoda

 Toxocara canis
Toxocara cati

Dogs, cats Rodents, birds (paratenic hosts) Cosmopolitan Visceral larva migrans

 Ancylostoma caninum Dogs Rodents Cosmopolitan Cutaneous larva migrans

 Uncinaria stenocephala Dogs (rare in cats) Rodents Cosmopolitan Cutaneous larva migrans
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Tapeworms in prey: cestode diseases associated 
to predation
Four genera of Cyclophyllidea cestods (Bertiella, 
Dipylidium, Raillietina and Mesocestoides) are poten-
tially zoonotic, though less studied and often reported 
as uncommon findings [110]. In particular, Dipylidium, 
Mesocestoides and Raillietina, associated with carnivores 
and rodents, respectively [111], can also have reptiles 
implicated in their biological life cycles. Indeed, through 
predation of secondary intermediate hosts (e.g. birds, 
reptiles and amphibians; Fig.  3b–d), dogs and cats may 
be infected by Mesocestoides lineatus and Mesocestoides 
literatus (Cyclophyllidea: Mesocestoididae), which usu-
ally proliferate in their peritoneal cavity as undifferenti-
ated larval stage causing ascites. While adults of these 
parasites are present in the intestine of carnivores, larval 
stages perpetuate in two intermediate hosts. The first is 
probably represented by arthropods (with cysticercoid 
larvae) and the second by insectivorous vertebrates, 
harboring elongated larval tetrathyridia (Fig. 4a, b). The 
identity of the intermediate hosts and biological life cycle 
remain enigmatic, terrestrial arthropods (e.g. dung bee-
tles, ants, roaches and mites) being considered first inter-
mediate hosts, with the development of metacestode 
stage following the ingestion of proglottids/oncospheres 
with the feces of the definitive hosts [112]. Furthermore, 
the detection of pre-tetrathyridial stages in the body cav-
ity of a ground skink (Scincella lateralis) further compli-
cated the understanding of the biology of Mesocestoides 
spp., suggesting that tetrathyridia could develop from 
hexacanth embryo within a single vertebrate host [113]. 
Mesocestoidosis is sporadically found in dogs and cats 
that hunt, typically in rural environments. Human cases 
of infections have been attributed to M. lineatus in Asia 
and Mesocestoides variabilis in North America, though 
the species identification mainly relies on the geographic 
origin of these cestodes rather than a clear morphologi-
cal and/or molecular delineation [110, 114]. In addition, 
the plasticity of the morphology of larval forms and pro-
glottids and the poor conditions of samples referred by 
patients hamper a clear understanding of the zoonotic 
infection routes. Of the 27 human cases of intestinal 
infections reported by Sapp and Bradbury [110], half are 
from East Asia (Japan, Korea and China) and the rest 
from the USA, with one from Rwanda; all were classi-
fied as foodborne infections due to the consumption of 
tetrathyridia in undercooked meat and organs of snakes 
[110]. Cases from North America, mainly in young chil-
dren, suggest that these may occur through contact with 
a variety of exotic pets and geophagy, though these are 
unlikely a source of tetrathyridia ingestion. In addition, 
the ingestion of an arthropod first intermediate host (yet 
unknown) should imply the development of tetrathyridia 

but not an adult intestinal infection. However, consider-
ing that tetrathyridial infections have been documented 
in non-human primates [115–117], and that in carni-
vores it is mainly diagnosed in animals during abdomi-
nal surgery or necropsy, the absence of cases in humans 
could be due to the low number of diagnostic oppor-
tunities compared to finding scolexes in the patients’ 
feces. All the above render knowledge about the routes 
of zoonotic infections and their diagnosis quite complex 
and enigmatic.

Furthermore, taeniid cestodes may also be associated 
with predation as their larval stages depend on an inter-
mediate host (Fig. 4c) [118]. One of the most life-threat-
ening cestode diseases is represented by echinococcosis, 
with Echinococcus multilocularis (Cyclophyllidea: Tae-
niidae) being strictly associated with predation of small 
rodents (e.g. voles) by foxes and dogs [119]. Adult ces-
todes develop on the intestine of canids, which excrete 
infective eggs in feces that are ingested by intermedi-
ate hosts. Humans  are infected once in contact with a 
contaminated environment or eggs adhered to dog fur, 
causing alveolar echinococcosis (Fig.  5) [120]. This dis-
ease is prevalent in the northern hemisphere (e.g. central 
Europe, the USA, Japan), becoming increasingly present 
in urban settings [119, 121]. For example, in Switzerland, 
E. multilocularis is present in urban areas (i.e. the city of 
Zurich) because of increasingly synanthropic foxes, serv-
ing as definitive hosts, that feed on rodents. In the urban 
or rural context, free-roaming dogs and cats can become 
infected by preying on rodents (Fig. 5) [119, 122]. Hence, 
infected cat and dog populations represent an important 
zoonotic risk [123]. Indeed, in areas of China where there 
are large populations of dogs and cats, the risk of infec-
tion is higher than that associated with the activity of fox 
hunting [124].

Other taeniid cestodes associated with lagomorphs 
and rodents as intermediate hosts, and dogs and cats as 
definitive hosts, are Taenia serialis and Taenia brauni 
(Cyclophyllidea: Taeniidae) [125, 126], which are preva-
lent in hunting and stray dogs and in cats, in rural areas 
[126]. Usually, humans become infected after ingesting 
eggs from the environment, causing subcutaneous or 
ocular coenurosis, as reported in many cases in Africa 
[127, 128].

Another group of medical and veterinary important 
cestodes are the water-associated tapeworms of the 
genus Spirometra (Pseudophyllidea: Diphyllobothrii-
dae), which use dogs, cats and other carnivores as defini-
tive hosts. The most common species found in dogs is 
Spirometra mansoni, and in cats Spirometra erinaceieuro-
paei [129]. Intermediate hosts are represented by aquatic 
crustaceans (first intermediate hosts, harboring procer-
coids) and aquatic or semi-aquatic vertebrates, such a 
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fish, amphibians and reptiles (second intermediate hosts, 
harboring plerocercoids). Both procercoids and plerocer-
coids (also known as spargana) are infective to humans 
through ingestion of contaminated water, contact or con-
sumption of second intermediate hosts [130, 131]. Spar-
ganosis is frequently reported in Southeast Asia because 

of common consumption of raw or uncooked snake and 
frog meat; however, the disease is also present in Africa, 
the Americas and Australia [128]. A meta-analysis review 
estimated the global prevalence of Spirometra in dogs 
to be 0.0723%, with S. mansoni being the most preva-
lent species (0.141%) in low-income countries (0.288%) 

Fig. 4  Parasites in intermediate hosts. A Mesocestoides sp. cysts in liver of lizard; B tetrathyridium of Mesocestoides sp.; C Cyclophyllidea cestode 
cysts in gecko; D nematode larva in the mesentery of a lizard
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of Africa (0.224%). In the same study, cats presented a 
higher prevalence (0.1040%), with  S. erinaceieuropaei 
as the most prevalent species (0.268%) in lower-middle 
income countries (0.134%) of Oceania (0.203%) [129, 
132].

Zoonotic nematodes of dogs and cat associated 
with predation
Many nematodes take advantage of the predator-prey 
relationship, such as metastrongylids, which use gas-
tropods (i.e. snails and slugs) as intermediate hosts, and 
a  myriad  of small animals (i.e. rodents, birds, snakes, 
lizards) as paratenic hosts (Fig. 4d) [133]. Most of these 
species (e.g. Aelurostrongylus abstrusus, Troglostrongy-
lus brevior in cats and Angiostrongylus vasorum in dogs) 
affect only their definitive hosts and have no zoonotic 
risk [134, 135]. However, zoonotic nematodes of the 
order Ascaridida (i.e. Toxocara) and Strongylida (i.e. 

Ancylostoma, Uncinaria) are also associated with the 
predator-prey relationship, in this case using prey as par-
atenic hosts [86, 136]. Predation of rodents and birds is 
important for the completion and maintenance of Toxo-
cara canis and Toxocara cati (Ascaridida: Toxocaridae), 
which are worldwide distributed parasites of dogs and 
foxes, and of cats and other felids, respectively. Toxocari-
ases are regarded as neglected tropical diseases with an 
overall seroprevalence in the human population of up 
to 16% [137] and a global population of positive dogs as 
high as 40% and cats up to 76% [138]. While the infec-
tion mainly occurs through the ingestion of larvated 
eggs from the environment, the predation of paratenic 
hosts carrying somatic (hypobiotic) L3 represents a 
major component in the maintenance and perpetuation 
of the biological life cycles of these zoonotic helminths 
[139–141]. Though ascarid larvae do not develop in the 
paratenic hosts, they may survive for up to 10 years, con-
tinuing the parasite life cycle for prolonged periods if the 
paratenic host is consumed by the definitive one [139, 
142]. Following the ingestion of larvated eggs by para-
tenic hosts, larval migration can cause clinical disease 
(larva migrans) depending on the number of larvae and 
on the organs infected. Paratenic hosts (rodents or birds) 
harbor larvae in the liver, skeletal muscles or brain tissue, 
according to host species, with potential consequences 
on their fitness and behavior. Both T. canis and T. cati 
show similar migration patterns toward the central nerv-
ous system [143, 144], which may cause disorientation 
of paratenic hosts, ultimately favoring  contact with the 
definitive hosts. Indeed, T. canis cause behavioral altera-
tions and central nervous symptoms (e.g. dullness, som-
nolence, kyphosis, paresis, incoordination and tremor) 
in the infected mice, probably because of immune reac-
tions rather than mechanical alterations [141, 145, 146 ]. 
Overall, these behavioral changes translate into a greater 
susceptibility to potential predators in the environment. 
In addition, the infection of the definitive hosts through 
predation of paratenic hosts has consequences on the 
time of larval development in adults, which is reduced 
(about 21 days) since larvae develop directly in the intes-
tine without the liver-trachea-intestine migration route 
[147]. Also, invertebrates may carry Toxocara spp. larvae, 
including those of T. cati, though it is not clear whether 
these animals act as paratenic hosts or just carriers of 
hatched larvae in their gut (transport hosts), as already 
demonstrated for many taeniid eggs [148]. Finally, T. 
cati larvae have been shown to be released from the tis-
sue of Rumina decollata snails [149], suggesting a role 
these mollusks may exert in the transmission of this 
ascarid through predation. This has been already dem-
onstrated for metastrongylids A. abstrusus and T. brev-
ior (feline lugworms) with snails, lizards and mice [119],  

Fig. 5  Life cycle of Echinococcus multilocularis. (1) Adults develop 
in intestine of dogs as definitive hosts, (2) eggs are excreted in feces 
and can contaminate (2.1) water or (2.2) the environment or (2.3) 
adhere to the fur of definitive hosts. (3) Intermediate hosts (rodents) 
and humans are infected by ingesting eggs, with larvae developing 
in cysts in organs (e.g. liver). (4) Dogs ingest intermediate hosts, and 
larvae develop in adults in the intestine
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also supported by the coinfections of these two groups 
of parasites in 18.6% cats from a multicenter European 
study [150]. In addiotn, Strongylida nematodes (Ancy-
lostoma  and  Uncinaria), known as hookworms, cause 
cutaneous larva migrans in humans, dogs and cats, being 
more prevalent in tropical and subtropical regions [151]. 
Moreover, Ancylostoma caninum (Rhabditida: Ancy-
lostomatidae) can also be associated with eosinophilic 
enteritis transmitted through the fecal-oral route [152]. 
Both A. caninum and Uncinaria stenocephala  (Rhab-
ditida: Ancylostomatidae) are usually transmitted orally 
through the ingestion of  third-stage (L3) larvae in the 
environment or through the skin (percutaneous route) 
[153] and occasionally through the predation of paratenic 
hosts represented by rodents [154]. Indeed, it was dem-
onstrated that L3s remain hypobiotic in rodents or other 
paratenic hosts such as monkeys [151].

Conclusions
The question of whether cats and dogs should be allowed 
to wander  and have an outdoor lifestyle is an ongoing 
debate. However, the impact these animals have on the 
decline and extinction of wildlife populations of small 
animals (i.e. rodents, birds, reptiles and amphibians) is 
evident, as is the important role predation has on the 
transmission of zoonotic parasitic diseases. Three cat-
egories of dogs and cats are recognized depending on 
their contact with humans and healthcare (companion, 
stray and feral) and, consequently, the risk of preying on 
potential intermediate hosts of parasites. Although com-
panion animals are more in contact with humans, and 
less with intermediate hosts, this category represents 
the major source of zoonotic transmission of parasites 
by means of fecal-oral infection, environmental con-
tamination and owners’ contact with hunted prey. The 
main zoonotic parasitic diseases associated with preda-
tion are represented by protozoa (toxoplasmosis, acute 
muscular sarcocystosis, cryptosporidiosis), cestodes 
(mesocestoidiosis, alveolar echinococcosis, coenusio-
sis, sparganosis) and nematodes (visceral and cutaneous 
larva migrans). To date, control strategies for dog and cat 
populations are based on mass sterilization and shelter-
ing of stray animals given that euthanasia and elimination 
are considered unethical. Thus, there is high permissive-
ness, mainly in western cultures, toward outdoor life-
style of dogs and cats, which  perpetuates the trophic 
transmission of zoonotic parasites. Predation, there-
fore, represents a potential risk for human health that 
should be addressed by stakeholders and public health 
officials on different levels (i.e. municipalities, regions, 
countries). Moreover, conscious and responsible own-
ership is pivotal for control programs to succeed. This 
includes education of owners and the community on 

proper deworming protocols, zoonotic parasites, dimin-
ishing outdoor access by offering enriched indoor envi-
ronments, and collection and hygienic disposal of feces. 
Thus, it is important that veterinarians advocate for a 
regular and periodic deworming of all categories of dogs 
and cats to reduce or clear parasitic burden, eventually 
reducing environmental contamination. It is important to 
raise awareness about the zoonotic potential of parasites 
of dogs and cats associated with predation, not only of 
owners and veterinarians but also of medical practition-
ers. As discussed in this review, the trophic transmission 
of zoonotic parasites has been scarcely studied, given the 
difficulties in assessing the role of intermediate hosts as 
well as running field studies to evaluate the risk of trans-
mission. However, future efforts should be performed to 
address the emergence or re-emergence of cats’ and dogs’ 
zoonotic parasites that depend on predation to update 
and improve control strategies. Creating awareness of pet 
owners, policy makers and scientists regarding the urgent 
need to reduce predation of intermediate or paratenic 
hosts by cats and dogs and the risk of zoonotic infection 
of parasites is ultimately the first step in creating a more 
conscious society.
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